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This experimental}theoretical paper discusses whether, and how accurately, the mass,
damping and sti!ness matrices for a purportedly two-degree-of-freedom (2-d.o.f.) system
may be reconstructed from the measured complex eigenvalues and/or eigenvectors. The
system consists of two parallel cantilevered beams with end masses connected by a third,
curved beam. Three procedures are used to reconstruct the matrices: the modal (M) method
using real natural frequencies, real modes and modal damping factors; Danek's (D)
reconstruction from complex eigenvalues and eigenvectors; a reconstruction (E) from
complex eigenvalues of the original and constrained system. It is shown that the damping
matrix constructed via D is extremely sensitive to errors in the phases of the complex
eigenvectors. The reconstruction via E uses only eigenvalues which can be measured much
more reliably than eigenvectors.

( 2001 Academic Press
1. INTRODUCTION

It is now almost universal practice to model a damped vibrating system by a matrix
equation of the form

MqK (t)#Bq5 (t)#Kq(t)"f (t). (1)

Here M, B, K are the mass, damping and sti!ness matrices, assumed to be symmetric and
positive de"nite. There are now well-established procedures for constructing M, K, using
"nite element methods or whatever, for a given mechanical system, and for updating them
so that computations made with them agree with actual measurements; see Friswell and
Mottershead [1] or Mottershead and Friswell [2] for a review of the literature. The
situation regarding B, the damping matrix, is quite di!erent. Every actual vibrating system
0022-460X/01/070219#22 $35.00/0 ( 2001 Academic Press
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experiences damping, but its origin is often ill-de"ned; it arises from structural joints, from
damping devices which have been deliberately applied to the system, from bearings and
other contacts between moving parts, etc. Provided that the damping is small (in some
sense) and the natural frequencies of the structure are well separated, it is usual to suppose
that the damping is viscous, and that it can be represented by modal damping factors. This
is equivalent to assuming that the three matrices M, B, K can be simultaneously
diagonalized; for conditions under which it is possible (see, e.g., reference [3]). In this
situation, the damping is said to be modal; the mode shapes of the damped system are then
the same as those of the undamped system; the only di!erence which the damping produces
is in the eigenvalues of the characteristic equation

det (Mj2#Bj#K)"0, (2)

instead of being purely imaginary, as in the undamped case, they become complex, with
small non-positive real parts. If it is assumed that the damping is modal, then the problem of
reconstructing B from complex eigenvalues is straightforward: there exists a non-singular
matrix X of (real) mode shapes such that

XT(Mj2#Bj#K)X"(j2I#jb#X2), (3)

where b and X2 are diagonal, i.e.,

b"diag (b
1
, b

2
,2, b

n
), X2"diag(X2

1
, X2

2
,2, X2

n
). (4)

If the complex eigenvalue pairs are (j
j
, jM

j
)n
1
, then

j2#b
j
j#X2

j
"(j!j

j
)(j!jM

j
), (5)

i.e.,

b
j
"!j

j
!jM

j
, X2

j
"j

j
jM
j
"Dj

j
D2 (6, 7)

and

B"X~TbX~1 . (8)

The question which we ask, and attempt to answer in this paper is&&Is it possible to
construct all three matrices M, B, K from experimental measurements of the behaviour of the
system, without assuming that the damping is modal ?''. We note that this question, as also the
reconstruction of B from modal-damping factors, is based on the presupposition that it is
possible to de"ne n, the number of degrees of freedom of the system. The best that can be
said about an actual system is that, in a speci,ed frequency range, it behaves roughly as
though it were a system with a certain number of degrees of freedom (d.o.f.). The "rst step in
any experimental investigation must therefore be the choice of a system with n d.o.f. in
a certain frequency range. After considering a number of possibilities we chose the system
shown in Figure 1. In the absence of (extra) damping (and its residual damping is very
small), its "rst three natural frequencies are 14)9, 38)6, 101)5 Hz. Since the third frequency is
well separated from the "rst two, the system can be treated as a two-degree-of-freedom
(2-d.o.f.) system for the limited range 0}50 Hz. Di!erent levels of viscous damping were
introduced through two independent collocated velocity feedback devices. The following



Figure 1. Experimental set-up.
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measurements were made: the two complex eigenvalues and eigenvectors; the single
complex eigenvalue of the system when the mass m

2
was "xed.

The plan of the paper is as follows: section 2 recalls the well-known reconstruction of M,
K from real modes; section 3 describes Danek's generalization of the reconstruction of M, B,
K from complex modes; and section 4 gives an account of the specialization of the theory
given in Gladwell [4] to small damping and n"2. Section 5 describes the experimental
procedure.

2. RECONSTRUCTION FROM REAL MODES

There is now a well-established procedure for "nding the real modes of a damped system,
i.e., the modes that the system would have if there were no damping. The details of the
experimental procedure and postprocessing analysis may be found in reference [5].

The real modes x
i
and real natural frequencies u

i
satisfy

(K!u2
i
M)x

i
"0. (9)

If X"[x
1
, x

2
,2, x

n
] then equations (9) for i"1, 2,2, n yield

KX5MXX2, (10)

where X2"diag(u2
1
, u2

2
,2, u2

n
). The orthonormality of the modes w.r.t. the mass matrix

now yields

XTMX"I, XTKX"X2. (11)

These equations may be solved for M, K:

M"X~TX~1 , K"X~TX2X~1. (12)



222 E. FOLTE) TE E¹ A¸.
These may be written in the alternative form

M~1"XXT , K~1"XX~2XT. (13)

We make two brief comments regarding this reconstruction; one positive and one
negative: in practice, for small n, say n)4, the condition number of the matrix X is small; as
a consequence the reconstructed K and M are reasonably insensitive to small errors in the
measured modes; the matrices M and K constructed from equation (12) will generally be
fully populated, even though there might be a priori reasons for assuming that they should
have a certain structure or connectivity of non-zero and zero terms; this is where model
updating has its place. Model updating provides a procedure for "nding a matrix with
the appropriate connectivity near, in some sense, to the reconstructed matrices. In the
particular case n"2 of course, there is no need for updating because M, K would be
expected, on physical grounds, to be fully populated.

3. DANEK'S RECONSTRUCTION

We recall the analysis from Danek [6]. The free vibration equations for q
j
(t)"y

j
exp(s

j
t)

are

(Mj2
j
#Bj

j
#K)y

j
"0. (14)

These are written in the form

C
!K 0

0 MDC
y
j

j
j
y
j
D"j

j C
B M

M 0 DC
y
j

j
j
y
j
D, (15)

and then assembled, as in equation (10), into one equation

AX"CXK3 , (16)

where

A"C
!K 0

0 MD, C"C
B M

M 0 D, (17)

X"C
Y Y

YK YKD, K3 "C
K

K1 D. (18)

We note that A, C are symmetric matrices of order 2n, and for small damping the
eigenvalues and eigenvectors both come in complex conjugate pairs: (j

j
,y
j
) and (j1

j
, y6

j
).

Now the columns of X are orthogonal w.r.t. C, so that

XTCX"I , XTAX"K3 , (19)

which yield

C~1"XXT , A~1"XK3 ~1XT . (20)
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We now examine these equations when A, C and X are replaced by the expressions in
equations (17) and (18). We "nd

C~1"C
0 M~1

M~1 !M~1BM~1D"C
Y Y

YK YKDC
YT KYT

YT KYTD , (21)

A~1"C
!K~1 0

0 M~1D"C
Y Y

YK YKDC
K~1

K~1DC
YT KYT

YT KYTD , (22)

and thus

M~1"YKYT#Y"YT"2 Re(YKYT), (23)

K~1"2 Re(YK~1YT), (24)

B"!2M Re(YK2YT)M, 0"Re(YYT). (25, 26)

Equations (23) and (24) provide an alternative to the real reconstruction equations (13);
equation (25) yields the damping matrix B; the last equation (26) gives an orthogonality
condition which the complex modes must satisfy if they are to be modes of a viscously
damped system.

The most important equation is equation (25). However, we found that B constructed
from experimental measured complex modes was extremely sensitive to small changes in the
complex mode shapes as we will discuss later.

4. RECONSTRUCTION FROM COMPLEX EIGENVALUES

In a recent paper, Gladwell [4] showed how a system made up of lumped spring-mass-
damper systems set in parallel could be constructed from its n pairs of complex eigenvalues,
and the (n!1) pairs of eigenvalues of the system when the end mass is "xed. We use this
theory, specialized to the case n"2 and to small damping.

There is an important matter which has not yet been properly clari"ed for damped
systems. It is well known that if an undamped (i.e., conservative) system is subjected to
a displacement-type constraint, then its eigenvalues will interlace the eigenvalues of the
original system. This interlacing condition plays a fundamental role in inverse problem for
conservative systems: a necessary condition for the existance of a system with eigenvalues
(j

i
)n
1
, and such that, when it is constrained, its eigenvalues are (k

i
)n~1
1

, is

j
i
)k

i
)j

i`1
, i"1, 2,2, n!1 . (27)

The interlacing condition is simple: there is one double-sided inequality for each k
i
. For

damped systems, the situation is quite di!erent: suppose a damped system has complex
conjugate pairs of eigenvalues (j

i
, jM

i
)n
1
. The conditions which must be satis"ed by pairs

(k
i
, k6

i
)n~1
1

, for them to be possible eigenvalues of the system when it is subjected to
a constraint, are not simple double-sided inequalities. Now the eigenvalues lie in the
complex plane and, unlike the real line, this cannot be ordered. Nor are there individual
conditions on the k

i
; the conditions involve the whole set of eigenvalues (k

i
, k6

i
)n~1
1

, as
shown in reference [4]. When n"2, there is just one set of conditions on Re(k

1
), and it is
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possible to show these conditions graphically in the three-space spanned by the real parts of
j
1
, j

2
, and k

1
. The conditions are shown in equations (59) and (60) and veri"ed for the

experimental results in section 8.
For the 2-d.o.f. model of the experimental system we expect the matrices to have the

forms

K"C
k
1
#k

12
!k

12
!k

12
k
12

#k
2
D, B"C

b
1
#b

12
!b

12
!b

12
b
12

#b
2
D, M"C

m
11

m
12

m
12

m
22
D. (28)

Both K and B are positive de"nite, diagonally dominant matrices with negative o!-diagonal
terms; M is positive de"nite and has positive o!-diagonal term m

12
. We "rst reduce the

problem to standard form by factorising M:

M"LLT , L~1KL~T"A , L~1BL~T"C , (29)

where

L"C
l
11

0

l
21

l
22
D. (30)

The matrices A, C will have the forms

A"C
p2
1

!a

!a p2
2
D , C"C

c
1

!d

!d c
2
D . (31)

This means that the free vibration equation

(Mj2#Bj#K)y"0 (32)

reduces to

(Ij2#Cj#A)x"0, (33)

where

y"L~Tx or x"LTy . (34)

We note that this last equation is

C
x
1

x
2
D"C

l
11

l
21

0 l
22
DC

y
1

y
2
D , (35)

so that y
2
"0 implies x

2
"0.

Clearly, we cannot expect to be able to calculate the three matrices M, B, K from the
eigenvalues alone. However, we can calculate A, C. More precisely, as shown later, we can
compute A from the two undamped eigenvalues of the system and the one undamped
eigenvalue of the system when y

2
"0; and we can compute C from the corresponding

damped eigenvalues. If we know M, from say (real) modal data, then we can compute L from
equation (29a) and then "nd

K"LALT , B"LCLT . (36)
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First, consider the calculation of A. Suppose the natural frequencies of the system in the
absence of damping are u

1
, u

2
, and for the constrained system, p

1
. Then

j
1
"i u

1
, j1

1
"!iu

1
, j

2
"iu

2
, j1

2
"!iu

2
, k

1
"i p

1
, kN

1
"!i p

1
(37)

and

det(A#j2I)"(p2
1
#j2) (p2

2
#j2)!a2

"(j!iu
1
) (j#i u

1
)(j!i u

2
)(j#iu

2
)

"(j2#u2
1
) (j2#u2

2
) . (38)

Thus,

p2
1
#p2

2
"u2

1
#u2

2
, p2

1
p2
2
!a2"u2

1
u2

2
. (39)

Since u
1
(p

1
(u

2
we may introduce an angle h such that 0(h(n/2, and write

p2
1
"u2

1
cos2 h#u2

2
sin2 h, (40)

then

p2
2
"u2

1
#u2

2
!p2

1
"u2

1
sin2 h#u2

2
cos2 h (41)

and

a"(u2
2
!u2

1
) cos h sin h . (42)

Now consider the damped system. Suppose the damped eigenvalues of the system are
(j

1
, j1

1
), (j

2
, j1

2
), and of the constrained system (k

1
, k6

1
), where

j
1
"!s

1
#i u

1
, j

2
"!s

2
#i u

2
, k

1
"!t

1
#ip

1
, (43)

and s
1
, s

2
, t

1
are small and positive. Then

(j2#c
1
j#p2

1
)(j2#c

2
j#p2

2
)!(a#jd)2

,(j!j
1
) (j!j1

1
)(j!j

2
)(j!j1

2
) , (44)

and

j2#c
1
j#p2

1
"(j!k

1
)(j!k6

1
) . (45)

Equation (45) gives

c
1
"!k

1
!k6

1
"2t

1
, (46)

while equation (44) gives

c
1
#c

2
"!j

1
!j1

1
!j

2
!j1

2
"2s

1
#2s

2
, (47)
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and thus

c
2
"2s

1
#2s

2
!2t

1
. (48)

Now putting j"k
1

in equation (44) we "nd

(a#k
1
d)2"!(k

1
!j

1
) (k

1
!j1

1
)(k

1
!j

2
)(k

1
!j1

2
) . (49)

Upon inserting the expressions for j
1
, j

2
, k

1
and taking the square root we "nd, to the "rst

order,

d"(s
2
!t

1
) tan h!(s

1
!t

1
) cot h . (50)

Equations (46), (48) and (50) give C, and then

B"LCLT"C
l
11
l
21

l
22
DC

c
1

!d

!d c
2
DC

l
11

l
21
l
22
D . (51)

On equating this to B given in equation (28) we "nd

b
12

"l
11

(l
22

d!l
21

c
1
), b

1
"l

11
M(l

11
#l

21
)c

1
!l

22
dN , (52, 53)

b
2
"(l

11
#l

21
) (l

21
c
1
!l

22
d)#l

22
(l
22

c
2
!l

21
d) . (54)

Since m
11

, m
12

, m
22

are all positive and M is positive de"nite, l
11

, l
21

, l
22

are all positive.
The conditions that b

1
, b

2
, b

12
be all positive lead to the inequalities

l
21
l
22

(

d

c
1

,
l
11

#l
21

l
22

'

d

c
1

,
l
11

#l
21

l
22

(

l
22

c
2
!l

21
d

l
22

d!l
21

c
1

. (55)

For consistency, these inequalities require

d'0 , c
1
c
2
!d2'0 . (56)

After some algebra we "nd

sin2 h cos2 h(d2!c
1
c
2
)"t2

1
!2t

1
(s
1

cos2 h#s
2

sin2 h)

#(s
1
cos2 h#s

2
sin2 h)2. (57)

Thus, t
1

must lie between the roots of the quadratic on the right-hand side; this leads to the
inequalities

(s1@2
1

cos h!s1@2
2

sin h)2(t
1
((s1@2

1
cos h#s1@2

2
sin h)2 . (58)

To show the feasible regions for s
1
, s

2
, t

1
we put s1@2

1
"x, s1@2

2
"y, t1@2

1
"z, then d'0 and

equation (58) become

y2 sin2 h!x2 cos2 h#z2 cos 2h'0, (59)

Dx cos h!y sin hD(z(x cos h#y sin h. (60)
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These state that P(x, y, z) must lie in a region bounded by two planes and a cone, as shown
later in Figure 7. When these conditions are satis"ed equations (52}54) will yield b

1
, b

2
,

b
12

all positive.

5. SENSITIVITY ANALYSIS

In this section, we attempt to explain why the damping matrix reconstructed via Danek's
method is so unreliable. To do so we estimate the sensitivities of terms in the mass, sti!ness
and damping matrices to changes in the phase of the complex modes.

In Danek's reconstruction, the inverse of the mass matrix is given by equation (23).
Suppose that M is diagonal; this simpli"es the analysis without signi"cantly a!ecting the
conclusions. Then

M"diag(m
1
, m

2
), M~1"2Re(YKYT ). (61)

Thus,

m~1
p

"2Re(j
1
y2
p1

#j
2
y2
p2

), p"1, 2,2, n. (62)

Suppose that the phase of y
pq

is /
pq

, so that

y
pq
"a

pq
exp(i /

pq
) . (63)

Then, since j
1
"!s

1
#iu

1
, j

2
"!s

2
#i u

2
, we have

m~1
p

"!2
2
+
q/1

a2
pq

(s
q
cos 2/

pq
#u

q
sin 2/

pq
) , (64)

and

1

m2
p

Lm
p

L/
pq

"4a2
pq

(s
q
sin 2/

pq
!u

q
cos 2/

pq
). (65)

When the damping is small, the phases /
pq

are all near !n/4 modulo n, so that

/
pq
"!n/4#a

pq
, (66)

where a
pq
Js

q
. Thus,

sin 2/
pq
"sin(!n/2#2a

pq
)"!cos 2a

pq
&!1, (67)

cos 2/
pq
"cos(!n/2#2a

pq
)"sin 2a

pq
&2a

pq
&s

q
, (68)

so that

!

1

m2
p

Lm
p

L/
pq

Js
q
. (69)

We may show similarly that the sensitivities of the terms of the matrix K~1 are also small,
proportional to the real parts of the eigenvalues.
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On the other hand, the damping matrix is given by equation (25), so that when M is
diagonal,

b
pq
"!2m

p
m

q
Re(j2

1
y
p1

y
q1
#j2

2
y
p2

y
q2

) (70)

"!2m
p
m

q

2
+
j/1

M(s2
j
!u2

j
) cos(/

pj
#/

qj
)#2u

j
s
j
sin(/

pj
#/

qj
)Na

pj
a
qj

. (71)

This equation shows b
pq

as the product of two terms, the "rst of which is m
p
m

q
. The

sensitivities of m
p

and m
q
to changes in phase have already been shown to be small. Typical

sensitivities of the remaining parts are

L
L/

kj
A
b
11

m2
1
B"4M(s2

j
!u2

j
) sin 2/

kj
!u

j
s
j
cos 2/

kj
Na2

1j
, (72)

L
L/

kj
A

b
12

m
1
m

2
B"2M(s2

j
!u2

j
) sin(/

kj
#/

k{j
)!u

j
s
j
cos(/

kj
#/

k{j
)Na

1j
a
2j

, (73)

where the pair of indices (k, k@) are either (1, 2) or (2, 1).
As before, for small damping, the sine terms are approximately (!1), while the cosine

terms are of the order of s
1

or s
2
. This means that the dominant term in the sensitivity of

b
pq

with respect to /
jk

is of the order u2
j
, i.e.,

Lb
pq

L/
kj

Ju2
j
. (74)

These sensitivities are not small, i.e. proportional to the s
j
, but are proportional to the

squares of the natural frequencies.

6. NUMERICAL SENSITIVITY SIMULATION

We consider a numerical example similar to that found in the experiment:

M"C
4.5 0

0 5.0D , B"C
15 !5

!5 20D , K"C
2 !1

!1 1.5D 105 . (75)

The exact eigenvalues and eigenvectors are

""diagM!1.39#122.2 i ,!2.28#243.9 iN , (76)

Y"C
0.0124!0.0124 i 0.0122!0.0123 i

0.0164!0.0165 i !0.0084#0.0083 iD . (77)

We note that the damping is not modal because the condition for this to hold, namely
KM~1B"BM~1K, is not satis"ed. In fact

KM~1B"

105

18 C
138 !112

!87 128D , BM~1K"

105

18 C
138 !87

!112 128D . (78)
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Both methods, Danek's reconstruction and complex eigenvalues, were used to construct the
three matrices M, B, K. Noise was added to all the data according to the formula

xL "x[1#ar], (79)

where r is a random number between !1 and 1, and a corresponds to the noise level. Ten
values of a were used, logarithmically spaced between 10~2 and 1. The reconstruction errors
were quanti"ed by the relative distances:

e
M
"

EM< !ME
EME

, e
B
"

EB<!BE
EBE

, e
K
"

EK< !KE
EKE

, (80)

where the norm of the matrices were taken as their greater eigenvalue.
Figures 8}12 show the evolution of the reconstruction errors (%) with respect to the level

of noise (%) for matrices M, B, K.
It can be seen that the reconstruction of the damping matrix via Danek's method is very

sensitive to the phase of the eigenvectors: a perturbation of 1% leads to an error of nearly
65% ! No other sensitivity exceeds 2%, showing that the eigenvalue reconstructions are
much more robust to data uncertainties.

7. EXPERIMENTAL SET-UP

7.1. THE STRUCTURE

The structure is shown in Figure 1. There are two straight beams and one curved beam:
beam 1, length 380 mm, section 40]10 mm; beam 2, length 565 mm, section 50]10 mm;
beam 3, length 670 mm, section 50]6 mm.

There are two masses, each comprising two blocks, 20]80]80 mm, bolted to the ends of
the beams 1 and 3, and 2 and 3 respectively.

7.2. EXCITATION

The excitation is provided by a light electromagnetic exciter. A coil is attached to mass
1 and placed inside the induction "eld of a magnet "xed to the ground, as shown in Figure 2.
The coil is connected to a signal generator via a power ampli"er. A 1 ) resistance is used to
measure the excitation current, which is proportional to the applied force. The
proportionality coe$cient had been previously determined during a calibration procedure.

7.3. ACCELERATION MEASUREMENT

The two accelerations are measured using BruK el & Kjaer accelerometers (type 4367,
mass"13 g) which are associated with two charge ampli"ers B&K (type 2626). The gain of
those ampli"ers is adjusted such that the output tension is 1 V for an acceleration of
9.81m/s2. Due to the particular direction of both excitation and measurements, only
in-plane vibrations are considered.

7.4. FEEDBACK DAMPING

Local feedback damping is applied to each beam using a small coil as velocity sensor and
a large coil as feedback actuator, one on each side of the beam, as shown in Figure 3. The



Figure 2. Electromagnetic exciter.

Figure 3. Feedback damping.

TABLE 1

Feedback gains of the nine damping conxgurations

Con"guration 0 1 2 3 4 5 6 7 8

g
1

0 2 5 10 20 25 20 10 25
g
2

0 2 5 10 20 25 2 2 0
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tensions coming from each velocity sensor can be ampli"ed separately. Nine di!erent
damping con"gurations were applied. Table 1 gives the corresponding feedback gains g

1
,

g
2
. These gains have to be taken in a qualitative sense. They represent the ratios between the

tensions delivered by the velocity sensors and the tensions applied to the collocated
actuators, without taking into account the calibration coe$cients of sensors and actuators.
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7.5. CONSTRAINT

The constraint consists in "xing the mass m
2

to the ground. This is simply done by
interposing an iron block between the bottom of the mass and the ground. The height of the
block is taken a little bit larger than the gap such that the friction forces are enough to block
the mass.

7.6. MEASUREMENTS

All measurements were performed by using a DSP Siglab acquisition set-up connected to
a PC. The output of the device was connected to the excitation coil, and three inputs were
measured: the excitation current and the accelerations of masses 1 and 2.

Each measurement was performed with the following procedure: (1) random excitation
between 0 and 50 Hz; this gave the approximate natural frequencies and 3 dB bandwidths,
(2) stepped sine excitation precisely located around each natural frequency.

The Bode plots corresponding to damping con"gurations 0 and 6 are shown in Figures
4 and 5; the "rst shows the plot for the unconstrained system, the second for the system with
mass 2 blocked. The complex eigenvalues and eigenvectors were extracted by using the
linear curve-"tting method of Modan [5]. The real eigenvalues and real eigenvectors were
extracted from the complex ones by using the appropriation technique [7]. The technique
also extracts the modal damping matrix from the real and complex modes.

8. RESULTS

8.1. COMPLEX EIGENVALUES AND MODES

Table 2 shows the real and imaginary parts of the eigenvalues. Those for the
unconstrained system are j

1
"!s

1
#i u

1
, j

2
"!s

2
#iu

2
; that for the constrained

system is k
1
"!t

1
#i p

1
. Table 3 shows the eigenvectors; the columns of
Figure 4. Displacement FRF of the unconstrained system: **, damping con"gurations 0; } ) ) }, 6.
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11
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>
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>

22
D



Figure 5. Displacement FRF of the constrained system: **, damping con"gurations 0; } ) )}, 6.

TABLE 2

Identixed complex eigenvalues

Con"guration s
1

u
1

s
2

u
2

t
1

p
1

0 0)1628 93)49 0)4117 242)4 0)4097 212)7
1 0)8611 93)67 1)373 242)9 0)9524 213)1
2 1)711 93)61 2)748 242)9 1)972 213)1
3 2)984 93)56 4)821 243)0 3)482 213)3
4 5)642 93)37 9)280 243)1 7)069 213)4
5 9)436 92)26 14)91 243)2 10)57 213)6
6 2)330 93)67 6)030 243)1 7)069 213)4
7 1)501 93)64 3)347 243)0 3)482 213)3
8 3)141 93)73 8)627 243)2 10)57 213)6

TABLE 3

Identixed complex eigenvectors

Conf.
r
>

11 i
>

11 r
>

21 i
>

21 r
>

12 i
>

12 r
>

22 i
>

22

0 0)0148 !0)0101 0)0211 !0)0156 0)0142 !0)0111 !0)0100 0)0081
1 0)0145 !0)0120 0)0205 !0)0184 0)0137 !0)0121 !0)0097 0)0087
2 0)0145 !0)0120 0)0205 !0)0185 0)0135 !0)0124 !0)0096 0)0089
3 0)0145 !0)0121 0)0205 !0)0186 0)0135 !0)0125 !0)0096 0)0090
4 0)0145 !0)0121 0)0205 !0)0187 0)0134 !0)0126 !0)0096 0)0090
5 0)0146 !0)0120 0)0204 !0)0188 0)0133 !0)0128 !0)0096 0)0091
6 0)0143 !0)0123 0)0206 !0)0184 0)0137 !0)0124 !0)0092 0)0093
7 0)0144 !0)0120 0)0205 !0)0183 0)0136 !0)0124 !0)0094 0)0091
8 0)0141 !0)0124 0)0206 !0)0183 0)0137 !0)0123 !0)0090 0)0095

are the eigenvectors of the unconstrained system, and we note

>
pq
"

r
>
pq
#i (

*
>
pq

) , p, q"1, 2. (81)
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It should be remarked that the feedback damping is very e$cient. By comparing the initial
structure (con"guration 0) with the most damped structure (con"guration 5), one can
observe that the real parts of the eigenvalues increase, respectively, by a ratio of 58 and 36
for the "rst and second mode. Such a large amount of damping could not be achieved by
using only passive techniques.

8.2. CHECKING THE INEQUALITIES

The quantities x"s1@2
1

, y"s1@2
2

, z"t1@2
1

should satisfy the inequalities (59) and (60). The
angle h in these equations is determined from the natural frequencies u

1
, u

2
, p

1
via

equation (40). Figure 6(a) shows the sections y"0.41171@2"0.642 of the region bounded
by equation (59), (60) for damping con"guration 0; Figure 6(b) shows the section
y"(8.627)1@2"2.937 for con"guration 8. In both cases P (x, y, z) lies inside the (shaded)
feasible region. Figures 6(a) an 6(b) were constructed from the values of h computed from
the measured values of u

1
, u

2
, p

1
for the appropriate damping con"guration. However, u

1
,

u
2
, p

1
vary only slightly with the damping; they have mean values 93.52, 243.0, 213.4 with

standard deviations 0.237, 0.250, 0.276 respectively. Figure 7 shows the three-dimensional
(3-D) region constructed from the value of h computed via equation (40) from the mean
values of u

1
, u

2
, p

1
. Again all the points P(x, y, z) lie inside the feasible region.

8.3. THE DANEK ORTHOGONALITY CONDITION

If the measured complex modes are in fact the eigenmodes of a 2 d.o.f. viscously damped
system, they should satisfy equation (26). Table 4 shows the value of

g"
ERe(YYT)E

EYYTE
100 . (82)

The orthogonality condition is not well satis"ed by the measured complex modes. This
con"rms the view that even with apparently precise measurements the errors in amplitudes
and phases of the components of the eigenvectors are considerably greater than those in the
eigenvalues; the errors can exceed 5%.
Figure 6. 2D representations of the feasible regions. (a) damping con"guration 0, >"0.642; (b) damping
con"guration 9, >"2.94.



Figure 7. 3D representation of the feasible region.

Figure 8. Sensitivity of the mass matrix, Danek reconstruction: h, sensitivity to the real part of the eigenvalues;
*, sensitivity to the imaginary part of the eigenvalues; s, sensitivity to the magnitude of the eigenvectors;
n, sensitivity to the phase of the eigenvectors.

234 E. FOLTE) TE E¹ A¸.
8.4. THE RECONSTRUCTED MATRICES

Table 5 shows the matrices M, K computed from the real eigenvalues and real
eigenvectors, and the damping matrix B computed from the modal damping parameters in
equations (8) and (6). Table 6 shows the matrices M, B, K computed by Danek's
reconstruction.

Omitting in both cases the outlier con"guration 0, the mean mass and sti!ness matrices
are

M
M
"C

4.385 0.391

0.391 4.462D , K
M
"C

1.775 !0.912

!0.912 1.033D 105 , (83)



Figure 9. Sensitivity of the damping matrix, Danek reconstruction: h, sensitivity to the real part of the
eigenvalues; *, sensitivity to the imaginary part of the eigenvalues; s, sensitivity to the magnitude of the
eigenvectors; n, sensitivity to the phase of the eigenvectors.

Figure 10. Sensitivity of the sti!ness matrix, Danek reconstruction: h, sensitivity to the real part of the
eigenvalues; *, sensitivity to the imaginary part of the eigenvalues; s, sensitivity to the magnitude of the
eigenvectors; n, sensitivity to the phase of the eigenvectors.
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M
D
"C

4.418 0.409

0.409 4.485D , K
D
"C

1.780 !0.914

!0.914 1.035D 105 . (84)

The standard deviations of these matrices are

sd(M
M

)"C
0.027 0.010

0.010 0.029D , sd(K
M

)"C
0.012 0.006

0.006 0.008D 105 , (85)

sd(M
D
)"C

0.024 0.016

0.016 0.022D , sd(K
D
)"C

0.014 0.007

0.007 0.007D 105 . (86)



Figure 11. Sensitivity of the damping matrix, eigenvalues reconstruction: h, sensitivity to the real part of the
eigenvalues; *, sensitivity to the imaginary part of the eigenvalues; s, sensitivity to the magnitude of the
eigenvectors; n, sensitivity to the phase of the eigenvectors.

Figure 12. Sensitivity of the sti!ness matrix, eigenvalues reconstruction: h, sensitivity to the real part of the
eigenvalues; *, sensitivity to the imaginary part of the eigenvalues; s, sensitivity to the magnitude of the
eigenvectors; n, sensitivity to the phase of the eigenvectors.
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An inspection of the damping matrices in Tables 5 and 6 will show that there is no
correlation between the two sets. The Danek values are non-sensical. Even omitting
con"guration 0, we see that the damping matrices do not steadily increase as the damping
steadily increases in con"gurations 1}5. Table 7 shows the matrices B and K computed from
the eigenvalue reconstruction method. Here we have used the mass matrix M computed
from the Danek reconstruction to give L from the factorization M"LLT. The mean and
the standard deviation of the sti!ness matrix are

K
E
"C

1.822 !0.898

!0.898 1.000D 105 , sd(K
E
)"C

0.013 0.056

0.056 0.006D 105 . (87)



TABLE 4

Danek orthogonality condition

Conf. 0 1 2 3 4 5 6 7 8

g 31)64 13)61 13)40 12)53 12)21 12)26 13)00 13)44 12)55

TABLE 5

Reconstructed matrices using modal method

Conf. M B K/105

0
4)63 0)50 3)11 !0)80 1)84 !0)93
0)50 4)74 !0)80 2)37 !0)93 1)08

1
4)43 0)36 10)63 !1)34 1)80 !0)93
0)36 4)44 !1)34 9)12 !0)93 1)04

2
4)34 0)36 20)76 !2)65 1)77 !0)91
0)36 4)44 !2)65 18)05 !0)91 1)03

3
4)27 0)33 36)06 !4)64 1)76 !0)91
0)33 4)42 !4)64 31)80 !0)91 1)03

4
4)21 0)27 68)81 !9)99 1)77 !0)93
0)27 4)44 !9)99 61)18 !0)93 1)04

5
4)11 0)21 110)2 !15)18 1)76 !0)94
0)21 4)49 !15)18 102)9 !0)94 1)06

6
4)25 0)34 40)59 !12)21 1)76 !0)91
0)34 4)47 !12)21 30)81 !0)91 1)04

7
4)32 0)35 23)47 !5)81 1)77 !0)92
0)35 4)47 !5)81 18)52 !0)92 1)04

8
4)25 0)31 57)79 !18)76 1)78 !0)93
0)31 4)50 !18)76 43)13 !0)93 1)05
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8.5. THE RECALCULATED EIGENVALUES AND EIGENVECTORS

The complex eigenvalues and eigenvectors were recalculated from the eigenvalue
equation (14). Table 8 shows the percentage errors e

R
, e

I
de"ned by

e
R
"

Ds
j
!sJ

j
D

s
j

100, e
I
"

Du
j
!uJ

j
D

u
j

100 (88)

for each mode and for the three methods, modal (M), Danek (D) and eigenvalues (E).
Clearly, the Danek reconstruction is completely unreliable for measuring the real parts of

the eigenvalues from the reconstructed matrices. The modal method is reasonably reliable. Of
course, the errors in the values computed from the eigenvalue reconstruction depend only on
the accuracy of the numerical linear algebra; they do not depend on the matrix M used in the
factorization M"LLT because the factors L, LT do not a!ect the eigenvalues:

Mj2#Bj#K"L(Ij2#Cj#A)LT. (89)

We computed the modal assurance criterion (MAC) and the modal scale factor (MSF) for
the modes calculated by all three methods but found that they were all almost 1)0; there was
no signi"cant di!erences between the three sets of results.



TABLE 6

Reconstructed matrices using Danek+s method

Conf. M B K/105

0
4)88 0)64 252)3 !25)62 1)92 !0)95
0)64 5)04 !25)62 175)4 !0)95 1)11

1
4)46 0)38 125)0 !21)66 1)81 !0)93
0)38 4)51 !21)66 72)69 !0)93 1)05

2
4)43 0)40 109)4 !7)59 1)79 !0)92
0)40 4)49 !7)59 71)59 !0)92 1)04

3
4)40 0)41 111)8 !6)60 1)77 !0)91
0)41 4)47 !6)60 81)27 !0)91 1)03

4
4)41 0)41 135)0 !6)37 1)78 !0)91
0)41 4)46 !6)37 105)5 !0)91 1)03

5
4)41 0)43 166)0 !3)44 1)77 !0)91
0)43 4)46 !3)44 142)2 !0)91 1)03

6
4)39 0)42 137)0 !1)49 1)76 !0)91
0)42 4)48 !1)49 56)83 !0)91 1)03

7
4)43 0)42 117)0 !3)79 1)78 !0)91
0)42 4)51 !3)79 61)09 !0)91 1)04

8
4)41 0)40 160)7 !0)46 1)78 !0)91
0)40 4)50 !0)46 53)32 !0)91 1)04

TABLE 7

Reconstructed matrices using eigenvalues method

Conf. B K/105

0
3)77 !0)54 1)91 !0)95

!0)54 1)66 !0)95 1)12

1
7)95 !2)35 1)85 !0)91

!2)35 11)56 !0)91 1)01

2
16)38 !4)40 1)83 !0)90

!4)40 22)34 !0)90 1)00

3
28)65 !7)50 1)81 !0)89

!7)50 38)63 !0)89 0)99

4
58)80 !13)52 1)82 !0)90

!13)52 70)04 !0)90 0)99

5
86)85 !22)73 1)81 !0)89

!22)73 122)9 !0)89 0)99

6
60)64 !4)04 1)81 !0)89

!4)04 11)57 !0)89 1)00

7
29)90 !3)22 1)82 !0)90

!3)22 12)33 !0)90 1)01

8
91)45 !4)77 1)82 !0)90

!4)77 10)76 !0)90 1)00

9. CONCLUSION

This experimental}theoretical paper develops three aspects of the inverse identi"cation
problem.
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TABLE 8

Percentage errors on the recalculated complex eigenvalues

Method M D E

Conf. Mode e
R

e
I

e
R

e
I

e
R

e
I

0
1 9)97 0)05 9573 1)47 0)0000 0)0001
2 4)83 0)11 6924 0)69 0)0000 0)0001

1
1 1)63 0)15 726 0)40 0)0007 0)0038
2 1)17 0)48 1031 0)19 0)0005 0)0020

2
1 1)27 0)90 361 0)57 0)0022 0)0155
2 0)92 1)56 363 0)14 0)0014 0)0076

3
1 3)24 0)35 194 0)78 0)0064 0)0473
2 0)90 0)25 177 0)18 0)0040 0)0233

4
1 4)14 0)41 100 1)27 0)0137 0)1751
2 1)04 0)04 74 0)25 0)0083 0)0806

5
1 5)84 0)06 60 2)03 0)0752 0)4753
2 1)31 0)09 34 0)24 0)0476 0)2295

6
1 2)60 0)14 259 0)66 0)0303 0)0100
2 1)12 0)22 129 0)33 0)0117 0)0517

7
1 2)83 0)23 414 0)52 0)0032 0)0108
2 0)99 0)20 273 0)20 0)0014 0)0115

8
1 2)36 0)12 186 0)78 0)0823 0)0029
2 1)24 0)29 78 0)45 0)0300 0)1220
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The "rst aspect concerns the introduction of controlled and adjustable viscous
damping in a continuous simple structure, initially very lightly damped, by an
electro-dynamic collocated feedback. The domain of variation of the real parts of the two
"rst complex eigenvalues is signi"cantly large. The ratio of this variation is about 60 for the
"rst mode.

The second aspect concerns the construction, by three di!erent methods, of a discrete
condensed model M, B, K of order 2, admitting as complex eigensolutions the two "rst
eigensolutions observed on the continuous structure. The comparison of the results of these
three methods illustrates their capabilities. These results are justi"ed by a sensitivity
analysis.

The last aspect exploits the possibilities of experimental control of viscous damping with
the aim of validating the analytical developments concerning the domain of variation of the
real parts of the "rst two complex eigenvalues and of the complex eigenvalue of the
constrained system.
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